
ORNL/SPR-2020/1766 
 

 

 

Progress on Associate-Particle Imaging 
Algorithms, 2020 

 

P. A. Hausladen 
M. A. Blackston 
A. J. Gilbert 
J. Gregor 
J. K. Mattingly 

November 2020 

Approved for public release. 
Distribution is unlimited. 



 

 

 
 

 

DOCUMENT AVAILABILITY 
Reports produced after January 1, 1996, are generally available free via US Department of Energy 
(DOE) SciTech Connect. 
 
 Website www.osti.gov 
 
Reports produced before January 1, 1996, may be purchased by members of the public from the 
following source: 
 
 National Technical Information Service 
 5285 Port Royal Road 
 Springfield, VA 22161 
 Telephone 703-605-6000 (1-800-553-6847) 
 TDD 703-487-4639 
 Fax 703-605-6900 
 E-mail info@ntis.gov 
 Website http://classic.ntis.gov/ 
 
Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange 
representatives, and International Nuclear Information System representatives from the following 
source: 
 
 Office of Scientific and Technical Information 
 PO Box 62 
 Oak Ridge, TN 37831 
 Telephone 865-576-8401 
 Fax 865-576-5728 
 E-mail reports@osti.gov 
 Website http://www.osti.gov/contact.html 

 
 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that 
its use would not infringe privately owned rights. Reference herein to 
any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 
 

 



 

 

ORNL/SPR-2020/1766 
 
 
 
 

Physics Division 
 
 
 
 
 
 
 

PROGRESS ON ASSOCIATE-PARTICLE IMAGING ALGORITHMS, 2020 
 
 
 

P. A. Hausladen 
M. A. Blackston 

A. J. Gilbert 
J. Gregor 

J. K. Mattingly 
 
 
 
 
 
 
 
 
 

November 2020 
 
 
 
 
 
 
 
 
 
 

Prepared by 
OAK RIDGE NATIONAL LABORATORY 

Oak Ridge, TN 37831-6283 
managed by 

UT-BATTELLE, LLC 
for the 

US DEPARTMENT OF ENERGY 
under contract DE-AC05-00OR22725 



 

 

 
 



 

iii 

CONTENTS 

LIST OF FIGURES .......................................................................................................................................v 
LIST OF TABLES ....................................................................................................................................... vi 
ACRONYMS ............................................................................................................................................. viii 
ABSTRACT ...................................................................................................................................................1 
1. INTRODUCTION .................................................................................................................................1 
2. PROGRESS ON ITERATIVE GAMMA-RAY TOF RECONSTRUCTION ......................................2 

2.1 RECONSTRUCTION FRAMEWORK .......................................................................................3 
2.2 GEOMETRY AND PHYSICS MODELING ..............................................................................4 
2.3 PRELIMINARY RESULTS ........................................................................................................5 
2.4 SUMMARY .................................................................................................................................7 

3. PROGRESS ON PROJECTION OF API OBSERVABLES INTO A MATERIALS BASIS ..............7 
3.1 METHODS ..................................................................................................................................8 

3.1.1 Physics model .................................................................................................................8 
3.1.2 The inverse problem .....................................................................................................10 
3.1.3 Assumptions and limitations .........................................................................................11 

3.2 MATERIAL RECONSTRUCTION ALGORITHM APPLICATION STUDY .......................11 
3.2.1 Gap determination .........................................................................................................12 
3.2.2 Quantifying low-Z material behind high-Z material .....................................................13 
3.2.3 Discrimination between materials of similar Z .............................................................13 

3.3 ADDITIONAL API PHYSICS MODELING ............................................................................14 
3.3.1 Modeling gamma emission ...........................................................................................15 
3.3.2 Time spectrum as a material signature ..........................................................................16 

3.4 OUTLOOK FOR MATERIAL IDENTIFICATION .................................................................17 
4. PROGRESS ON MATERIAL IDENTIFICATION USING FULL SPECTRAL ANALYSIS ..........18 

4.1 INTRODUCTION .....................................................................................................................18 
4.2 FY 2020 PROGRESS ................................................................................................................19 
4.3 FY 2021 PLANS ........................................................................................................................30 

5. ACKNOWLEDGEMENTS .................................................................................................................30 
6. REFERENCES ....................................................................................................................................30 
 

 



 

 

 

 



 

v 

LIST OF FIGURES 

Figure 1. Example 3D reconstruction of gamma rays (in debugging phase). ................................................6 
Figure 2. Projection data for reconstructed images. .......................................................................................7 
Figure 3. Representative cross sections for (a) photons and (b) neutrons. ....................................................8 
Figure 4. Example neutron and x-ray incident flux. ......................................................................................9 
Figure 5. Example input (a) radiography data and (b) algorithm output. ....................................................10 
Figure 6. Example simulated radiograph and reconstructed material areal densities for the two 

annuli. ..............................................................................................................................................12 
Figure 7. Simulated (a) x-ray and (b) neutron radiographs of the AT400R nuclear storage 

container in which the top sphere is Pu and the bottom sphere is W. .............................................14 
Figure 8. Reconstruction outputs using radiography data from (a) x-rays only and (b) both x-rays 

and neutrons. ...................................................................................................................................14 
Figure 9. (a) A schematic diagram of neutron interrogation producing gamma radiation, and (b) a 

comparison of the output of the analytical model given in Equation (3.3) and MCNP 
simulation for a small cube of Fe. ...................................................................................................15 

Figure 10. (a) Geometry of detector, objects, and source for proof-of-concept model, and (b) time 
spectra for (black) full detector average, (blue) an 8 × 8 region of interest centered on the 
object on the left, and (dashed) an 8 × 8 ROI centered on the object on the right. ........................17 

Figure 11. Illustration of a 1D voxel transfer function H relating emergent current 𝑱𝒐𝒖𝒕to incident 
current 𝑱𝒊𝒏. ......................................................................................................................................18 

Figure 12. Coupling of multiple voxel transfer functions. ...........................................................................19 
Figure 13. Neutron and photon trajectories emerging from a 1D, 1 cm thick slab of polyethylene 

(left), Fe (center), and HEU metal (right) for a monodirectional source of 14 MeV 
neutrons incident on the left face of each slab. ...............................................................................20 

Figure 14. Histograms of position, direction, energy, and time-delay for neutrons emergent from a 
1D slab of polyethylene in response to a monodirectional source of 14 MeV incident 
neutrons. ..........................................................................................................................................21 

Figure 15. Histograms of position, direction, energy, and time-delay for neutrons emergent from a 
1D slab of Fe in response to a monodirectional source of 14 MeV incident neutrons. ..................22 

Figure 16. Histograms of position, direction, energy, and time-delay for neutrons emergent from a 
1D slab of HEU metal in response to a monodirectional source of 14 MeV incident 
neutrons. “Transmitted” neutrons emerge from the side of the voxel opposite the source, 
and “reflected” neutrons emerge from the same side as the source; uncollided neutrons 
(those that passed through the slab without interaction) are omitted. The “ridges” labeled 
in the histograms of emergent energy versus direction result from (a) elastic scatter by 
uranium. ..........................................................................................................................................23 

Figure 17. Histograms of energy, direction, and time-delay for neutrons emergent from a 1D slab 
of (a) polyethylene, (b) Fe, and (c) HEU metal in response to a monodirectional source of 
14 MeV incident neutrons. ..............................................................................................................24 

Figure 18. Distribution of source neutron energy and direction used to generate 1D voxel transfer 
functions. .........................................................................................................................................25 

Figure 19. Transfer functions relating emergent and incident energy for 1D slabs of (a) 
polyethylene, (b) Fe, and (c) HEU metal. .......................................................................................27 

Figure 20. Distribution of energy and direction for the test case using an isotropic fission 
spectrum neutron source. ................................................................................................................28 

Figure 21. Comparison of transmitted and reflected neutron current calculated directly using 
(black) MCNP to (red) the current predicted using transfer functions for 1D voxels of (a) 
polyethylene, (b) iron, and (c) HEU metal. .....................................................................................29 

 



 

vi 

 

LIST OF TABLES 

Table 1. Summary of quantitative gap determination using the reconstruction algorithm output. ..............13 
 



 

 

 

 



 

viii 

ACRONYMS 

1D One-dimensional 
2D Two-dimensional 
3D Three-dimensional 
API associated-particle imaging 
D-T deuterium-tritium 
DU depleted uranium 
FY fiscal year 
HEU highly enriched uranium 
MCNP monte-carlo n particle 
MVp megavolt peak 
ORNL Oak Ridge National Laboratory 
PNNL Pacific Northwest National Laboratory 
SIRT simultaneous iterative reconstruction technique 
TOF time of flight 
TV total variation 
WLS weighted least squares 
 

 



 

 

 

 



 

1 

ABSTRACT 

The present work describes the progress on developing imaging algorithms that use fast neutron 
signatures acquired using the associated-particle imaging (API) method. The present work complements 
ongoing work to develop neutron source and detector hardware to enable field inspection by investigating 
algorithms that are capable of discriminating among critical materials or extracting three-dimensional 
(3D) geometrical information from single-sided or transmission measurements. The present work is 
divided into three approaches: 

1. Iterative reconstruction of inelastic gamma-ray emissions to perform 3D time-of-flight (TOF) 
imaging in a single view in either transmission or backscatter configurations. Iterative reconstruction 
enables image resolution better than the inherent TOF resolution. 

2. Decomposition of registered neutron and x-ray radiographs into an assumed material list for each 
pixel in the image. 

3. Material identification using full spectral analysis that includes the emergent neutron and gamma ray 
energies, times, and angles. 

Progress for each approach is summarized for fiscal year (FY) 2020. 

1. INTRODUCTION 

For the past decade, Oak Ridge National Laboratory (ORNL) has developed 3D tomographic imaging 
techniques using fast neutrons from a deuterium–tritium (D-T) neutron generator produced via the 𝑑 +
𝑡 → 𝛼 + 𝑛 reaction. This development has focused on the API technique, in which the time and location 
of detected alpha particles (ascertained by a detector embedded in the D-T neutron generator) determine 
the time and direction of the associated 14.1 MeV neutrons. Using API techniques, transmission imaging 
with excellent contrast using a wide-cone beam can be achieved. Induced-reaction imaging techniques 
that can reconstruct images of the probability of induced fission and hydrogen elastic scattering are also 
possible. In these induced-reaction imaging modalities, the lines of response are determined by the initial 
directions of the interrogating neutrons as determined by their associated alpha pixels. Progress has also 
been made on developing imaging techniques whose contrast originates from small-angle scattering and 
inelastic neutron scattering (reconstructing based on either detected gammas or on detected neutrons). 

To date, effort for developing imaging techniques has concentrated on tomographic measurements using 
laboratory imaging systems with gantries that position the source and detector with respect to each other. 
For these imaging techniques, image reconstruction does not correspond to uniquely identifying materials 
and densities for each voxel in the image. Rather, image reconstruction corresponds to reconstructing a 
single parameter for each voxel of the image. In transmission images, that parameter is the attenuation 
coefficient, which can be interpreted to be the total probability of a neutron interacting per centimeter. For 
induced-fission imaging, the parameter is the number of neutron pairs produced per centimeter per 
incident neutron. A further complication of reconstructing induced-reaction images is that inferring 
physical values for voxels in the image requires knowledge of the reconstructed 3D transmission through 
the volume to correct for efficiency. 

The present work is part of an effort to transition imaging using D-T neutrons from laboratory use to field 
use to enable a portable inspection capability. In this use case, the source and detector will be hand-
positioned, and imaging will be limited to a single or few views. In some instances, transmission imaging 
may not be possible. Other efforts address the source and detector hardware to reduce their size, power, 
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and complexity to the operator. The present work addresses algorithm development to extract maximum 
information from the available API signatures in the context of single or few-view measurements. This 
algorithm work can be categorized into the following two general themes. 

1. Algorithms that directly calculate images from data with a minimum of assumptions to give operators 
the best estimate of a 3D object geometry from a single measurement. In this case, images are voxel 
maps in which each voxel value corresponds to the probability of a given interaction and may be 
calculated from data in either transmission or backscatter measurement geometries. 

2. Algorithms that directly reconstruct for materials and densities (rather than a parameter that encodes 
the probability of a particular reaction) but may have constraints on the materials or geometry to 
make the optimization problem tractable. 

The present work investigates the following three distinct approaches that address these themes: 

• Iterative TOF reconstruction of inelastic gamma-ray emissions. This approach reconstructs the 
probability of inducing inelastic gamma rays per incident neutron in each voxel of an image. Because 
the speeds of 14 MeV neutrons and gamma rays are known, performing 3D TOF reconstruction in a 
single view in either transmission or backscatter configurations is possible. Iterative reconstruction 
enables image resolution better than the inherent TOF resolution. 

• Decomposition of x-ray and neutron transmission into a materials basis. This approach uses 
transmission imaging of D-T neutrons and high-energy x-rays to reconstruct a best-fit decomposition 
to an assumed material list for each pixel in registered neutron and x-ray radiographs. Including 
additional API observables is planned for future efforts. 

• Material identification using full spectral analysis. The goal of this approach is to make a best 
estimate of the materials in an inspected object of known geometry by simultaneously fitting all 
possible API signatures. The initial thrust of this effort is to identify a means of implementing a 
forward model that is sufficiently fast and calculates all of the desired signatures. 

This document reports progress on the development of these three approaches to analysis of API imaging 
data for FY 2020. This report also satisfies the FY 2020 deliverables, “Progress Report on Inelastic 
Gamma TOF Reconstruction, FY20,” “Progress Report on Material Identification Using Full Spectral 
Analysis, FY20,” and “Progress Report on Projection of API Observables into Materials Basis, FY20” of 
the project “Associated-Particle Imaging Algorithms for Material Identification” supported by the US 
Department of Energy’s Office of Defense Nuclear Nonproliferation Research and Development. 

2. PROGRESS ON ITERATIVE GAMMA-RAY TOF RECONSTRUCTION 

Imaging the distribution of inelastic-scattering gamma rays produced in an object by the passage of 
interrogating D-T neutrons is desirable because the known speeds of 14 MeV neutrons and gamma rays 
make 3D TOF reconstruction possible in a single view when the source and detectors are positioned in 
either a transmission or a backscatter configuration. This form of imaging has been investigated 
previously by a number of authors using spectroscopic gamma ray detectors primarily to quantify the C, 
N, and O in cargo to screen for the presence of explosives [1]. 

ORNL began investigating iterative reconstruction of TOF images of inelastic gamma rays induced by 14 
MeV D-T neutrons in the “Fast TOF Correlation” project performed in collaboration with Lawrence 
Livermore National Laboratory. In this work, gamma ray detection was performed by fast organic 
scintillator neutron detectors used primarily for multiplicity counting, but which are sensitive to gamma 
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rays and allow fast timing. Significantly, this work demonstrated that iterative reconstruction using the 
knowledge of the system response could achieve better spatial resolution than the intrinsic resolution 
given by TOF [2]. However, after these initial investigations, the ORNL effort on the Fast TOF 
Correlation project shifted to concentrate on developing a fast-timing neutron imaging panel. 
Investigation of iterative reconstruction shifted to the present work. 

In other previous work, ORNL collaborated with the University of Tennessee, Knoxville, on the “3D 
Tomography and Image Processing Using Fast Neutrons” project to combine modern, parallel iterative 
reconstruction techniques with novel associated-particle, fast-neutron–induced reaction (induced fission 
and elastic scatter) and transmission imaging methods [3]. The resulting reconstruction code for novel 
imaging techniques achieved sufficient speed for practical 3D image reconstruction, approached favorable 
solutions using regularization and constraints, and weighted data by appropriate errors. The present work 
uses the building blocks of this existing 3D tomographic reconstruction code to implement 3D 
reconstruction of inelastic gamma ray emissions that is sufficiently fast and selects “good” images that 
have smooth sections with sharp edges. 

2.1 RECONSTRUCTION FRAMEWORK 

To reconstruct smooth images while preserving sharp edges consistent with machined parts, image 
reconstruction is modeled by the following weighted least squares (WLS) minimization problem that is 
subjected to a total variation (TV) constraint: 

 𝒙∗ = argmin
"#$

!
"
‖𝑨𝒙 − 𝒚‖%& +	𝛽‖𝒙‖&&	s. t. TV(𝒙) ≤ 𝜖 (2.1) 

Here, matrix 𝑨 = D𝑎'(F incorporates knowledge about the system geometry and the physics associated 
with the induced gamma reactions; matrix 𝑾 = diag[𝑤'] implements statistical weighting; and vectors 
𝒙 = D𝑥(F and 𝒚 = [𝑦'], respectively, represent the image being reconstructed and the acquired projection 
data. Each equation in the linear system models what happens to neutrons as they travel in the direction of 
an alpha ray from the D-T source toward the detector array. TV refers to the L1 norm of the L2 norms of 
the image gradients given by 

 𝑇𝑉(𝒙) =P‖∇'𝒙‖
'

	. (2.2) 

The effect of constraining the TV value of the image is sparsification of the gradient magnitude image. 
This sparsification leads to solutions that exhibit smooth regions with well-defined edges. 

The WLS-TV problem is solved using a relaxed, incremental, proximal gradient scheme that consists of a 
two-step iteration [4]. First, the WLS term is minimized using a proximal mapping that keeps the image 
somewhat close to the one produced in the previous iteration. Next, the TV constraint is satisfied by 
mapping the image to the closest point on the surface of an L1 ball. This mapping is implemented using 
the Chambolle–Pock algorithm for solving convex optimization problems [5]. 

Using a less mathematical description, the WLS computation initially converges to an image that has 
relatively sharp edges, even if it appears grainy or otherwise noisy. After that, the closest image that 
satisfies the TV constraint is selected. The process is then repeated. In each iteration, the WLS 
computation is prevented from deviating too far from the image produced by the TV constraint and vice 
versa. After several of these two-step iterations, a solution emerges for which the WLS residual error is 
relatively small, and the TV value is close to or smaller than the given constraint. 
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The WLS minimization is implemented using a modified version of a preconditioned gradient decent 
method known as the simultaneous iterative reconstruction technique (SIRT). During the 𝑘)* iteration, the 
image is forward projected to produce model-based projection data. The difference between the measured 
and the forward-projected data is then backprojected to update the image using appropriate scaling to both 
ensure and accelerate convergence. Mathematically [6], 

 𝒙(,-.) = S𝑰 − 𝛼𝛽𝑪VW	𝒙(,) − 	𝛼𝑪V𝑨0𝑾S𝑨𝒙(,) − 𝒚W, (2.3) 

where preconditioning matrix 𝑪V has the following values: 

 
𝑪V ≡ diag Y

1
∑ 𝑤'(∑ 𝑎'** )𝑎'('

\	. (2.4) 

Parameters 𝛼 and 𝛽 control the behavior of the algorithm. Both are set automatically using mathematical 
bounds, but they can be overwritten by the user. Parameter 𝛼 controls the step size for the update. 
Parameter 𝛽 controls the degree to which minimization of the data fidelity term drives the computation 
versus the desire to regularize the solution using the minimum-norm Tikhonov term. 

Parameter 𝜖 represents an upper bound on the TV value. This is set automatically based on a user-defined 
full width at half maximum value for the image resolution. The user also has the ability to set this bound 
to an explicit value, should that be desired. 

A more detailed descriptions of this specific WLS-TV framework can be found elsewhere [7, 8]. Notably, 
those implementations exploit the concept of “ordered subsets” to accelerate convergence, which is not 
applicable here because data was only acquired for only a single projection. Future work will look into 
alternative acceleration methods as well as use of the ray-based WLS algorithm known as the algebraic 
reconstruction technique [4], which updates the image using the following iteration scheme: 

 
∀𝑖 ∶ 	 𝒙(,-.) = 𝒙, −	

𝑨'1𝒙, − 𝑦'
|𝑨'|&& + (𝑤'𝛽)2.

	𝑨' , (2.5) 

where 𝑨' denotes the corresponding row of the matrix. The algebraic reconstruction technique update 
equation is not regularized. 

2.2 GEOMETRY AND PHYSICS MODELING 

The neutron source is modeled as a set of alpha normal vectors 𝒏3 emanating from a single-point location 
𝒑4. The detectors are modeled as a set of point locations 𝒑5 	and surface normal vectors 𝒏5. The image 
voxels are modeled by their center-point locations 𝒑(. An arbitrary number of neutron source locations is 
supported. All alpha and detector variables are indexed relative to a specific neutron source location to 
allow for multiple projections (views), possibly based on different detector configurations. The authors 
omitted the source indexing here for the sake of simpler notation. 

Each acquired projection data entry 𝑦35) represents the number of gamma rays detected in a specified 
time window based on neutrons that were emitted in the direction of a particular alpha normal vector. 
Matrix 𝑨 models the number of neutrons emitted in the direction of an alpha normal vector times the 
probability that they interact with material at any one of the voxels in a manner that contributes to gamma 
rays being detected by each of the detectors within the mentioned windows. Because the alpha normal 
vectors do not line up with the voxel centers, image-space interpolation is used to obtain effective voxels 
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located at incremental distances from the source along the direction of each alpha normal vector. Thus, 
the indices of matrix elements 𝑎'( refer to 

𝑖 ≡ (alpha	direction, detector, time	window) 

and 

𝑗 ≡ (interpolation − based	voxel	location). 

At each incremental distance from the source, the probability of a gamma ray being detected is calculated 
as the product of the solid-angle Ω(5 ,	detector efficiency 𝜖5, and the probability of the gamma ray 
reaching the detector within a given time window 𝑝(5)	where the voxel subscript indicates that the 
variable depends on the location from which the gamma ray was emitted. 

Although most of the acquired projection data will represent true coincidences, some will represent 
accidental coincidences. The accidental coincidences are modeled as the expected rates calculated from 
the number of neutrons emitted times the number of gamma rays detected and the fraction of total scan 
time each time window corresponds to. 

Combined, forward projection can therefore be mathematically expressed as 

𝑦35) = 𝑁3 	PΩ(5 	𝜖5 	𝑝(5)	𝑥(
(

+ 𝑟35 , 

where 

𝑟35 =
𝑁3𝑁65Δ𝑡
𝑇789:

. 

The direction of the emitted neutrons is associated with uncertainty, which is modeled by an alpha cone 
that has a Gaussian cross section. That is, the interpolated voxel center located at an incremental distance 
along an alpha normal vector mentioned above is actually the weighted sum of many interpolated voxel 
centers obtained as follows. Represented using spherical coordinates, 𝒑( = (𝑟, 𝜃, 𝜙) is tilted to produce 
𝒑(0 = (𝑟, 𝜃 + 𝑑𝜃, 𝜙), which is then spun around the former using a unit quaternion-based representation 
of rotation. The image is sampled at regular intervals during this process, each time using interpolation. 
The tilt determines the probability associated with the sampled voxels. Backprojection is the reverse of 
the forward projection. The above interpolations to compute the forward and backprojection are 
calculated on-the-fly at relatively high cost because of the need for upward of hundreds of interpolation 
operations for each incremental step along an alpha ray (i.e., fewer interpolations closer to the source, 
more interpolations further away as the alpha uncertainty cone opens up). 

2.3 PRELIMINARY RESULTS 

Two example reconstructed images using the preliminary code are shown in the left and right columns of 
Figure 1. The brightest object that appears in both images is a depleted uranium (DU) cylinder. For one 
data set, the interior contains a DU ball. For the other, the interior is empty (i.e., no ball). Figure 1 shows 
𝑥𝑦 and 𝑧𝑦 slices of the reconstructed image volumes. Although the DU ball is visible in the 𝑧𝑦 slice and 
the line profile through the middle thereof, it appears more like an isthmus in the 𝑥𝑦 slice. As desired, the 
DU ball is absent in the no-ball images and the line profile. The DU cylinder is cylindrical, but some 
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geometric distortion is apparent near the middle of both 𝑥𝑦 slices. The edges of the support cone take on 
artificially large values in several places. 

 
Figure 1. Example 3D reconstruction of gamma rays (in debugging phase). 

Each scan acquired data for 512 alpha rays and 72 neutron and gamma ray detectors. The image was set 
to be 90 × 180 ×180 voxels with dimensions of 0.67 cm on a side. SIRT was run for 100 iterations, which 
appeared to more than needed to reach convergence. Using a small four-core MacBook Pro, initialization 
took 32 s, establishing the TV constraint took 1,000 s, and running SIRT took 2,400 s. The total run time 
was thus about 60 min per reconstruction. 

Figure 2 shows the measured and forward projections for alpha pixel 239, which is oriented toward the 
DU ball. Good agreement exists between the two projections for both data sets. However, a nonlinear 
time shift can be seen for gamma rays that were induced near the source. This shift indicates the presence 
of either a geometry or a timing bug in the system model. 

Ball: WLS-TV image, Alpha pixels 1-512

-30 0 30

z coordinate (cm)

-60

0

60

y 
co

o
rd

in
a
te

 (
cm

)

Ball: WLS-TV image, Alpha pixels 1-512

-60 0 60

x coordinate (cm)

-60

0

60

y 
co

o
rd

in
a
te

 (
cm

)

No ball: WLS-TV image, Alpha pixels 1-512

-30 0 30

z coordinate (cm)

-60

0

60

y 
co

o
rd

in
a
te

 (
cm

)

No ball: WLS-TV image, Alpha pixels 1-512

-60 0 60

x coordinate (cm)

-60

0

60

y 
co

o
rd

in
a
te

 (
cm

)

0 20 40 60 80 100 120 140 160 180

y coordinate (cm)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

In
d
u
ce

d
 g

a
m

m
a
s 

p
e
r 

a
lp

h
a
 p

e
r 

cm

Ball: Line plot for x=3cm, z=1.5cm

0 20 40 60 80 100 120 140 160 180

y coordinate (cm)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

In
d
u
ce

d
 g

a
m

m
a
s 

p
e
r 

a
lp

h
a
 p

e
r 

cm

No ball: Line plot for x=3cm, z=1.5cm



 

7 

 
Figure 2. Projection data for reconstructed images. 

Although the ball appears more like an isthmus in the upper image (source-to-detector plane), the ball is 
clearly visible in the transaxial plane (intersected by the alpha rays). Changing the voxels sizes and the 
sampling rates for the image-space interpolation had little effect. 

2.4 SUMMARY 

A preexisting code for 3D neutron tomography was repurposed for the inelastic gamma scatter imaging. 
To implement these changes, the system geometry and system matrix code were rewritten entirely 
because no overlap existed. Several data structures were reimplemented to support indexing based on 
alpha direction, detector, and time window. The SIRT-based WLS solver was adapted to match the new 
indexing scheme. File I/O was also extended to include handling data in the hierarchical data format 
version 5 (HDF5) file format. The code was not written with computational efficiency in mind, but 
several methods can make it run faster. Some of these methods will be explored in the upcoming year, 
including a more efficient way of handling the alpha uncertainty cone. The possibility of accelerating 
SIRT in a manner similar to ordered subsets will also be investigated. However, extensive validation and 
debugging should be completed first to ensure overall correctness of the approach. Statistical weighting 
will be studied to see if the reconstruction quality improves when higher-count alpha rays carry more 
weight than lower-count rays (i.e., for the data shown above, a 50× difference between the minimum and 
maximum counts existed). 

3. PROGRESS ON PROJECTION OF API OBSERVABLES INTO A MATERIALS BASIS 

Pacific Northwest National Laboratory (PNNL) previously developed a method to perform quantitative 
material reconstructions using radiography data for x-rays [9] and for x-rays and neutrons [10]. In this 
methodology, each pixel of the transmission image is decomposed into the optimal quantities of “basis 
materials,” in which the number of basis materials equals the number of distinct interrogations. This 
method requires an accurate understanding of the response of the radiography system and combines a 
physics-informed calculation of the expected response with inverse methods to quantitatively reconstruct 
the areal densities of a short list of known materials for the inspected object. The method also requires 
appropriate basis materials to be known. 
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Recent interest in using neutron radiography to noninvasively interrogate objects provided an opportunity 
to adapt this algorithm to combined neutron and x-ray radiography data. Data acquired using API systems 
are not only of particular interest because the API method enables reduced neutron scattering on the 
imaging plane for transmission measurements, but also because observation of additional, induced-
reaction signatures such as secondary gamma emission and neutron scattering allow new forms of 
contrast [11]. Therefore, PNNL seeks to further develop this method to include additional observables 
from API systems to enable high-accuracy material reconstructions. 

3.1 METHODS 

3.1.1 Physics model 

For an inverse algorithm to be able to estimate a material composition from observed radiography data, a 
physical model must be provided that describes how the radiography systems respond to a given material 
composition. 

The present physics model includes exponential attenuation through the object, the energy distribution of 
the source, and the energy-dependent efficiency of the detector. This baseline model describes how a set 
of material densities will attenuate a beam of x-rays or neutrons between the particle source and a 
radiographic detector pixel. The baseline model for a given pixel ij and interrogation k, rijk, is defined as 

 𝑟'(,Sρw⃗ '(W = y𝜀,(𝐸)
	

<
𝜙",,(𝐸) expD−µw⃗ (𝐸) ∙ ρw⃗ '(F dE. (3.1) 

In Equation (3.1), the response 𝑟 is calculated as a function of the incident spectral flux 𝜙", the energy-
dependent detector efficiency 𝜀, the attenuation coefficient µ, and the areal density 𝜌'( of each material 
along the path from the source to the detector pixel located at (𝑖, 𝑗). The attenuation and areal density are 
written as vectors 𝜇⃗ and ρw⃗ '( because each has a length equaling the number of basis materials L. The 
index k denotes a given interrogation, such as x-ray or neutron. Notably, the integration over energy for 
each interrogation indicates that the radiographic detectors cannot determine particle energy, but instead, 
the integrated response increases linearly with both increasing particle energy and particle flux, which is 
typical of digital radiographic detectors. Example material attenuation coefficients for x-rays and neutrons 
are shown as a function of energy in Figure 3. 

 
Figure 3. Representative cross sections for (a) photons and (b) neutrons. 
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The attenuation coefficients currently used are based on tabulated cross sections from available 
compilations, though they could be modified to reflect experimentally observed attenuation that includes 
in-scattering. 

In Figure 4, example source energy spectra are shown for 6 and 9 megavolt peak (MVp) energy x-rays 
and 14.1 MeV D-T neutrons. Note that the megavolt peak value specifies the accelerated electron energy 
and corresponds to the maximum (or endpoint) energy of x-rays generated by the Bremsstrahlung x-ray 
source. In contrast to the monoenergetic D-T neutron source, the Bremsstrahlung x-ray spectra are very 
broad in energy. The unique way in which materials are attenuated by an interrogated object and detected 
by the imaging system allows discrimination and reconstruction of the material composition from 
radiography data. The x-ray spectra have additionally been filtered by 2 cm of Pb to remove low-energy 
flux that deleteriously affects material identification. Neutron radiography data can be particularly useful 
as an addition to x-ray radiography data because neutrons and x-rays interact with materials in unique 
ways, putting different signatures in the radiography data that can be used in the material reconstructions. 
For example, hydrogenous materials are particularly opaque to neutrons compared to x-rays. 

 
Figure 4. Example neutron and x-ray incident flux. 

A matrix for each of the interrogations k is organized according to the relative pixel locations: 

𝐑, = �
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To account for a finite spatial resolution of the imaging systems, convolution matrices are used in the 
physics model to represent this effect. Given the two-dimensional (2D) matrix Rk, a convolution matrix C 
can be applied to model the spatial blurring. The present work assumes a 2D Gaussian kernel, which is 
separable, so it can be applied in a single dimension at a time. The image data model for interrogation k is 
then given by 

𝐃, = 𝐂.,𝐑,𝐂&,1 , 

where the 1 and 2 indices on C denote the two dimensions of application of the convolution. For the 
current image model, C1k = C2k. As a final step before use in the inverse problem, the image data matrices 
are vectorized into an IJK long vector according to 
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𝑑(ρw⃗ ) = 𝑣𝑒𝑐(𝐃., 𝐃&, ⋯ , 𝐃,) = D𝑟...⋯𝑟?.., 𝑟.&.⋯𝑟?&., ⋯ , 𝑟?>.⋯𝑟?>@F, 

where the vector ρw⃗  is of length IJL, comprising all materials L at all image pixels IJ. 

3.1.2 The inverse problem 

Given a model of how the radiography systems respond to a set of materials, the inverse problem seeks to 
take an observation and the physics model to estimate the best-fit material composition that produced the 
observed data. The baseline inverse problem is stated as a least-squares fit of the data model vector 𝑑(ρw⃗ ) 
to the equivalent observed data vector 𝑑AB4 with TV regularization. 

 𝜌⃗∗ = argmin
CDD⃗

!
" �𝑑(ρw⃗ ) − 𝑑AB4�%

&
+ 𝛼	TV(𝜌⃗) (3.2) 

The optimization problem is to find the best set of material densities 𝜌⃗∗ that fit the observed data. The TV 
regularization term is added to the inverse problem to stabilize solutions that can be very sensitive to 
noise. Using the parameter α, the TV regularization term holds the expectation that the solution is 
piecewise smooth, or that variations of image composition between neighboring pixels are expected to be 
small. Balancing the regularization term with the data misfit is important for accurate material 
reconstructions. Previous work has shown that α can be picked adaptively [10]. 

Equation (3.2) is an optimization problem over the parameter set of material areal densities 𝜌⃗. In this 
work, this equation is minimized using the Gauss–Newton method. The Newton method is an iterative 
optimization method that approximates the minimization function, Equation (3.2) as quadratic at each 
iteration and minimizes that approximation by varying the parameter vector 𝜌⃗. This repeats until some 
convergence criteria is met, such as very small changes in 𝜌⃗. 

Since calculating the second derivatives required for the quadratic approximation can be computationally 
expensive, the Gauss–Newton method approximates the second derivative as a product of first derivatives 
of the minimization function. This has been shown previously to be an effective method that balances 
computational complexity with quick convergence [10]. An example of the input radiographic data and 
the output material reconstructions given by the algorithm is shown in Figure 5. 

 
Figure 5. Example input (a) radiography data and (b) algorithm output. 
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3.1.3 Assumptions and limitations 

The accuracy of the output of an inverse algorithm depends on knowledge of the system response, 
including the input source spectrum, transport through the object, and the detector response to a given 
energy of particle flux. 

Assumptions: 

• Radiography data are well registered, such that pixels in one radiograph can be matched to any other 
radiography data used in the analysis. 

• A good conjecture of the material composition is available to make a set of materials (or 
representative materials) to reconstruct. 

• The response of the system to a given set of materials is thoroughly understood. Spatial resolution, 
scattering, and more complex interactions in the object or its surroundings are important contributors 
to the system response. These effects can be modeled or approximated. The present algorithm 
includes modeling of the spatial resolution and energy response of the detector. Scatter 
approximations have been implemented previously [10], although flexibility to the different scatter 
profiles from a variety of objects has not been completed. 

• The interrogation systems are generally stable. This aligns with the well-understood system 
responses. An x-ray or neutron generator that varies significantly in spectrum or intensity over time 
would cause inaccuracies in the material reconstructions. The authors of this report have experience 
building flexibility to detector instabilities into the algorithm, similar to a flat-field correction with 
radiography data. This work accounts for instabilities in flux magnitude and endpoint in experimental 
hyperspectral x-ray radiography data using the observed spectrum. For energy-integrating detectors, 
an understanding of the energy response of the detectors could be used for similar corrections. Note 
that others have shown that material reconstructions may not be sensitive to the x-ray endpoint [12]. 

Limitations: 

• The number of materials in the material list cannot exceed the number of interrogations, and the 
interrogations must each carry unique information on the material composition. For example, 
scanning an object with a 6 and 6.5 MV Bremsstrahlung x-ray source would make material 
reconstruction difficult because the two spectra are largely overlapping. However, neutron and x-ray 
radiography carry largely unique material information because the particles interact differently with 
many materials. 

• The system models must be able to be computed quickly. The reconstruction is iterative, so full 
Monte Carlo models cannot be run at each iteration. The aim for reconstructions is in the order of 
minutes on a typical laptop computer. Reconstruction time scales with the number of pixels, 
materials, and iterations. Current reconstructions of three 100 × 100 radiographs for three-material 
reconstructions can currently be completed in about 5 mins for 30–50 iterations. 

3.2 MATERIAL RECONSTRUCTION ALGORITHM APPLICATION STUDY 

Assessing the performance of radiography systems for particular applications is complicated. However, 
abstracting a desired capability, such as high-resolution or material penetration, and then devising a test to 
compare different systems by a common metric or process is often possible. In the present study, many 
desirable capabilities were abstracted and evaluated to determine the extent to which quantitative material 
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reconstructions could aid these tasks. In particular, the application study focused on the following three 
capabilities: 

1. Quantifying the gap size between concentric annuli 
2. Quantifying the amount of low materials of similar atomic number (-Z) material shielded by high-Z 

material 
3. Discriminating among materials of similar Z 

For each capability, a material geometry was chosen for evaluation, radiation-transport simulations 
performed to produce radiographs, and analysis performed using the material reconstruction algorithm. 
The present report summarizes this work, but more information can be found in the presentation Material 
quantification with dual-mode radiography, PNNL-SA-154031. 

3.2.1 Gap determination 

To evaluate quantification of gaps, x-ray and neutron radiographs were calculated via the Monte-Carlo N-
Particle (MCNP6) radiation transport simulations for an object composed of two annuli. In the absence of 
a gap, the object consisted of a stainless-steel inner annulus having an inner diameter of 13.4 cm and an 
outer diameter of 18.4 cm and an outer high-density polyethylene annulus with an inner diameter of 18.4 
cm and an outer diameter of 23.4 cm. The presence of a gap was created by decreasing the thickness of 
each annulus equally but maintaining the overall outer and inner diameter of the object. 

Transmission images were calculated for 6 and 9 MVp energy Bremsstrahlung x-rays and 14.1 MeV D-T 
neutrons to obtain three radiographs built from 1 cm2 face F4 tallies arranged on a 100 × 100-pixel 
cylindrical detector. This number of pixels matched the expected neutron detector pixel pitch and eased 
the computational burden of investigating the accuracy of material reconstruction. Materials were defined 
from natural isotopic fractions to reference the latest cross section libraries. Flux convergence of <1% 
was obtained for 108 histories. Statistical noise was added to the simulated transmission neutron 
radiographs by assuming either 100 s (high noise) or 1,000 s (low noise) acquisitions of nominally 100 
neutron counts per second per pixel in an unattenuated image pixel and sampling a Poisson distribution 
after scaling the simulated image data. Neutron radiographs were blurred with a 2D Gaussian kernel with 
a standard deviation of two pixels. The x-ray radiographs had lower noise by a factor of 10 and better 
spatial resolution by a factor of two. Gaps between 0 and 10 mm were simulated by modifying material 
thicknesses. Example simulated data and material reconstruction outputs are shown in Figure 6. 

 
Figure 6. Example simulated radiograph and reconstructed material areal densities for the two annuli. The 

(a) radiograph is shown with simulated noise of a 100 s measurement without blurring along with reconstructed (b) 
steel and (c) high-density polyethylene areal densities. 

Using the reconstructed material compositions, gaps between the material layers were determined by 
fitting the reconstructed material outputs to a ray-traced model of an annulus to determine the inner and 
outer radii of each material. Results from this analysis are summarized in Table 1, with varying levels of 
image noise and blurring. The following are key conclusions from these results: 

(a) (b) (c) 
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1. Material reconstructions allow quantitative material measurements, even in the presence of image 
noise and blurring, provided that a good system response model is provided. 

2. Although neutron radiography data have higher noise and greater image blurring, higher-accuracy 
material reconstructions can be made compared to those with x-rays alone. 

Table 1. Summary of quantitative gap determination using the reconstruction algorithm output. 

Case Est. gap at 90% confidence (mm) 
High noise, no blur 4.0 

Low noise, blur 4.3 
Low noise, blur 
w/o blur model 8.1 

High noise, no neutron >10 
 

The material quantification algorithm does not presently appear to support a more accurate determination 
of edges than the direct analysis of the images. However, on an encouraging note, the determination of 
material areal densities appears to be minimally affected by the presence or absence of gaps. In the 
present work, accuracy in determining the gap size was limited by the coarse pixel pitch (corresponding 
to neutrons) implemented in the material quantification algorithm. Future work will address implementing 
the algorithm on the high-resolution pixel grid of the x-ray detector. Implementation at high resolution 
may require variable grid spacing, with increased sampling near rapidly varying regions of the image 
close to object edges, and reduced sampling in slowly varying areas of the image to reduce computational 
burden. Quantification of gaps in measured data can also be affected by small-angle scattering that, when 
scattered down open paths, is preferentially transmitted to the detector. 

3.2.2 Quantifying low-Z material behind high-Z material 

The second desirable capability that has been identified is the ability to quantify low-Z, low-density 
material shielded by high-Z, high-density material. This quantification is challenging when the high-Z 
material attenuates most of the x-ray flux. Using MCNP, radiographs of overlapping lead and 
polyethylene slabs were simulated with a range of material thicknesses that ranged from 0.7 to 7 mean 
free paths of Pb and 0.1 to 1 mean free paths of polyethylene (to 6 MeV x-rays). Again, 6 and 9 MVp x-
ray radiographs were simulated along with 14.1 MeV D-T neutron radiographs. For this study, the key 
benefit of neutron radiography over x-ray radiography for accurate reconstruction of the polyethylene 
thickness is the greater penetration through the thick Pb layer. This benefit is shown by lower errors in the 
polyethylene thickness estimated by the reconstruction algorithm when including the neutron information. 
For example, the estimated thickness extracted from a number of radiographs of 1.7 cm polyethylene 
thickness behind 7 cm of lead had an error of 22 ± 51% when using x-rays alone, but 12 ± 7% when using 
x-rays and neutrons. 

3.2.3 Discrimination among materials of similar Z 

The third capability that has been identified is the ability to discriminate among materials of similar 
atomic number (Z) and density. Materials of similar Z exhibit similar x-ray attenuation, making it difficult 
to tell them apart even with a dual- or multi-energy x-ray interrogation. Neutron attenuation coefficients 
are distinct from x-ray and offer a unique material signature that, when combined with x-rays, can be used 
for accurate material reconstructions. 
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To investigate this capability, interrogation of high-Z spheres in an AT400R nuclear materials storage 
container was simulated using MCNP. The container has layers of polyethylene and steel and contained 
either two Pu spheres, or one Pu sphere and one W sphere. Three x-ray radiographs at 5, 6, and 9 MVp 
and a 14.1 MeV D-T neutron radiograph were simulated, and the resulting radiographs are shown in 
Figure 7. This object is highly attenuating, especially for x-rays, which exhibit a thickness of about 7 
mean free paths through the thickest portion of the object. The simulated image data provided to the 
reconstruction algorithm here assumed a 1,000 s neutron acquisition and no image blurring. Again, the x-
ray radiographs are assumed to be ten times lower noise. 

 
Figure 7. Simulated (a) x-ray and (b) neutron radiographs of the AT400R nuclear storage container in which 

the top sphere is Pu and the bottom sphere is W. 

Outputs from the reconstruction algorithm are shown in Figure 8, using a three-material list of Pu, steel, 
and HDPE for the reconstruction. Given the high x-ray attenuation of the object, the material 
reconstructions using x-rays alone are poor and have difficulty quantifying the material in the thickest 
portion of the object. Adding the neutron data with its greater penetration and unique material signature 
allows material reconstruction behind those thickest portions. Notably, the estimations with neutron 
radiography data also show a variation in material estimated in the region of the bottom sphere as an 
underestimate of Pu and steel along with an overestimate of poly. This is an anomaly that indicates that 
the top sphere is not Pu. These results provide an example of how neutron radiography in addition to x-
ray radiography can be useful for both increased penetration and quantitative analysis. 

 
Figure 8. Reconstruction outputs using radiography data from (a) x-rays only and (b) both x-rays and 

neutrons. 

3.3 ADDITIONAL API PHYSICS MODELING 

Beyond the analysis of transmission radiography data, PNNL has begun work exploring how to use 
additional information that is available from the API method. In particular, this effort has concentrated on 
the following two API observables: 

1. Secondary gamma emissions from API neutron interrogation. For material signatures, the outgoing 
gamma rays have an energy signature, such as the unique energy dependence of inelastic scattering 

(a) (b) 

(a) (b) 
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emissions, and an intensity signature, specifically with interactions such as fission [13] that result in 
considerable gamma generation. 

2. The observed time spectrum from the API neutron interrogation. Because a multitude of interactions 
occur with a beam of neutrons passing through an object, the time spectrum can be seen as an 
aggregate measure that carries information about these interactions, including gamma generation and 
neutron scattering. 

This section introduces how these observables are being modeled and used, though this work is still 
continuing. 

3.3.1 Modeling gamma emission 

Work on modeling the gamma-ray emissions from an interrogated object are summarized here. A more 
complete description can be found in the December 2019 report to NA-22, Prompt gamma emission for 
material identification, PNNL-29512. 

To quantify the material composition of an inspected object using its prompt gamma-ray emissions, a 
simple and accurate physics model is required that describes the generation of gamma rays from the 
interacting fast-neutron beam and the attenuation of these gamma rays as they exit the object. An initial 
model presently under development will use a pencil-beam attenuation model to study fast-neutron 
reaction rates for interactions that create secondary gammas in simple object models, as seen in Figure 9. 

 
Figure 9. (a) A schematic diagram of neutron interrogation producing gamma radiation, and (b) a 
comparison of the output of the analytical model given in Equation (3.3) and MCNP simulation for a small 
cube of Fe. 

An analytical model can be posed to determine fast neutron reaction rates 𝐹 at a location 𝑥 in an object 
that would create gammas at a variety of energies: 

 𝑑, = ∫ (𝑟,𝐹(𝐸F)𝐷(𝐸6)
	
<#$%

𝑒2G(<&)C + 𝐵𝐺(𝐸6))𝑑𝐸6, 

where 𝐹(𝐸F, ∆𝑧) = ∫ 𝜙(𝐸F, 𝑧)Σ(𝐸F)
	
∆I 𝑑𝑧. 

(3.3) 

 
Here, an observable 𝑑 of index 𝑘	is a function of the gamma production rate 𝑟	and the neutron reaction 
rate 𝐹 from which secondary gamma rays are generated from the interrogating neutron flux 𝜙 of energy 
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𝐸F and cross section Σ. The detector response function 𝐷S𝐸JW captures the gamma detector efficiency, 
finite energy resolution, and partial energy deposition. The exiting gammas are exponentially attenuated 
according to the object density 𝜌 and attenuation coefficient µ depending on the energy 𝐸J of the 
secondary gamma ray. 

The integration over z to get F may be over the whole object, or a small δ𝑧, depending on whether the 
interrogating neutrons are continuous or tagged/pulsed. The background detection rate from, for example, 
scattered gamma and neutron radiation, is given by BG. 

The OpenMC software [14] was used to retrieve evaluated nuclear data file (ENDF) data. This software 
puts the data into HDF5 files, which eases accessibility to the wide range of data available in ENDF. 
Although OpenMC also includes Fortran code to execute Monte Carlo criticality calculations, the present 
work uses the Python API to provide interpretable nuclear data. Notably, the OpenMC code was 
developed for neutron transport, though the most recent versions also include photon interaction data. 
With this tool, nuclear data can be quickly queried to find incident neutron data of interest, including 
secondary gammas from inelastic and capture interactions. Using the reaction type (MT) numbers as 
defined in the ENDF Manual, neutron interaction cross sections and gamma ray emission cross sections 
can be determined for a variety of interaction types. 

A simple MCNP simulation was made to examine the photon production physics and to determine how 
well Equation (3.3) can be used to anticipate the gamma emissions that could be observed with 14.1 MeV 
neutrons. In this simulation, a pencil beam of 14.1 MeV neutrons impinge on a small 5 × 5 × 5 mm3 
material volume. A 4π-flux tally and 4 in. right-circular cylinder high purity germanium detector tally are 
placed 30 cm away to capture the spectrum of gammas that are emitted from the sample. 

Whereas a real object interrogated by a real D-T neutron source would require a more complex model, the 
objective was to use a “minimal” model to extract the physics processes generating photons, such as 
inelastic scattering, fission, (n, 2n), and so on. From the model, it was determined that most of the 
gammas produced on 208Pb are from (n, 2n) reactions generating the continuum in the spectrum in Figure 
9, although  how they could be used for material identification is unclear. As in previous work [11], this 
study focuses on the discrete emission lines of the inelastic (n,ng) excitations, although any gamma-ray-
emitting interaction could potentially be accommodated for in algorithm development. 

Figure 9 (b) shows the comparison of the output from the small-cube MCNP model and the analytical 
model, Equation (3.3). Agreement on the intensity of the discrete gamma lines is good, and the gamma 
rays emitted from reactions that result in a gamma-ray continuum are shifted to lower energies. In three-
body interactions like (n, 2n), the energy of the outgoing gamma will be affected by the energy of the 
outgoing neutrons, which is not yet captured in the analytical model. Nonetheless, this result shows that 
an analytical model can capture many of the physical attributes of gamma-producing neutron interactions 
in a simple geometry. Work is continuing on developing realistic physics models and implementing the 
data into the material reconstruction algorithm. 

3.3.2 Time spectrum as a material signature 

PNNL is currently evaluating the possibility of performing material quantification from pixel-based 
measurements of time spectra. Spatially dependent time spectra can be a signature of both the material 
and geometry of the object and could supplement the neutron/gamma-based image data beyond simply 
the reduction of scatter. 

Figure 10(a) shows the geometry of the simple proof-of-concept case of a plane detector with 1 cm 
resolution at 85 cm from a D-T neutron source. The object geometry includes four 3 cm-long cylinders 
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with radii of 4 cm. The objects are defined with a small, 1 cm, gap between the pairs of cylinders in the 
beam direction. Further, each pair is offset by 8 cm from the center line of the beam line. For this proof-
of-concept demonstration, we suppose a nonphysical interaction of the neutron that can only result in 
capture and emission of a prompt gamma ray, and that the emission angle of the gamma rays is uniform 
within 12° of the original neutron’s direction. The material specific (n,𝛾) probability for the cylinders on 
the right is twice the probability of the cylinders on the left. Although the geometry and physics are 
nonphysical at this point, this model is presented to begin to generate efficient physics models that 
capture the timing of the various neutron interactions in an object. 

 
Figure 10. (a) Geometry of detector, objects, and source for proof-of-concept model, and (b) time spectra for 
(black) full detector average, (blue) an 8 × 8 region of interest centered on the object on the left, and (dashed) 

an 8 × 8 ROI centered on the object on the right. 

For this model, a Monte Carlo framework for particle tracing with (n,𝛾) kinematics has been set up to 
evaluate the expected magnitude of differences in the time spectrum that would be anticipated for a given 
geometry and object. This framework samples both interaction probabilities in the cylinders and the 
gamma emission angle to calculate the time spectra that would be observed on the image plane for this 
given object. Time bins are 0.5 ns wide, and no further timing resolution (blurring) was applied. Figure 
10(b) shows the time spectra for two 8 × 8 pixel patches centered in the object regions (blue) along with 
the full detector average (black). The left side (solid blue) shows more events at shorter times, from the 
faster moving gamma rays, and fewer slower neutrons at the longer times than the does the right side 
(dashed blue). The shorter times (~10 ns) indicate captures in the objects nearer to the source where the 
distance traveled by the neutrons is the shortest. Also, the central dip at about 11 ns is due to the 1 cm gap 
between each pair of cylinders. 

Isotropic photon emission processes can make reconstruction algorithms more complicated. Work is in 
progress to add realism to this model to determine the capability of using time spectra in reconstructing 
the material composition of an object. 

3.4 OUTLOOK FOR MATERIAL IDENTIFICATION 

In the upcoming year, PNNL expects to split the effort between two thrusts that are both intended to 
increase the accuracy of material reconstruction. The first thrust will be to revise the forward model for 
transmission to account for additional physical effects such as x-ray and neutron scattering. The second 
thrust will be to include additional API observables beyond transmission. In particular, secondary gamma 
emission and the time spectrum on the API detector will both be explored in the context of high-accuracy 
material reconstruction. 

(a) (b) 
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4. PROGRESS ON MATERIAL IDENTIFICATION USING FULL SPECTRAL ANALYSIS 

4.1 INTRODUCTION 

Most approaches to analyzing API neutron data isolate single observables such as neutron transmission, 
elastic scattering, inelastic collisions and emitted neutrons or gamma rays, (n,xn) reaction neutrons, or 
induced-fission neutrons or gamma rays. When attempting to identify materials and densities in an 
inspected object, simultaneously fitting all possible signatures and evaluating all combinations of 
materials, densities, and geometries of the inspected object is desirable. 

The present effort assumes a known geometry but unknown materials and densities. Evaluation of many 
thousands of combinations of materials will require approximate forward transport that is fast enough to 
perform the ensemble of calculations in minutes. The initial thrust of this effort is to identify means of 
implementing this fast forward model. 

During FY 2020, North Carolina State University began developing a method for accelerating transport 
calculations using precomputed voxel “transfer functions.” Figure 11 illustrates this approach; the voxel, 
represented in the figure as a one-dimensional (1D) slab of material, is modeled using a transfer function 
(also known as an impulse response or Green’s function) that predicts the particle current emergent from 
the voxel given the incident particle current: 

 
𝐽AK)(𝑦) = y𝐻(𝑦; 𝑥)𝐽'F(𝑥)

	

$

𝑑𝑥, (4.1) 

where the incident current 𝐽'F is a function of energy 𝐸'F, and direction 𝜇'F, the cosine of the particle’s 
direction with respect to the surface normal of the 1D voxel, 

 𝑥 = {𝐸'F, 𝜇'F} ∈ 𝑋 = (0,∞) × [−1,1], (4.2) 

and the emergent current 𝐽AK) is a function of energy 𝐸AK), direction 𝜇AK), and time delay 𝜏 = 𝑡AK) − 𝑡'F, 

 𝑦 = {𝐸AK) , 𝜇AK) , 𝜏} ∈ 𝑌 = (0,∞) × [−1,1] × (0,∞). (4.3) 

In operator notation, the distribution of emergent particle energy, direction, and time-delay is related to 
the distribution of incident energy and direction by 

 𝐽AK) = 𝐇𝐽'F. (4.4) 

 
Figure 11. Illustration of a 1D voxel transfer function H relating emergent current 𝑱𝒐𝒖𝒕to incident current 𝑱𝒊𝒏. 
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If energy, direction, and time are histogrammed into discrete “bins,” then the operation is equivalent to 
matrix multiplication. 

For a series of coupled voxels, the current emerging from the last voxel can be predicted given the current 
incident on the first voxel, as Figure 12 illustrates. Note that coupling multiple voxels will require 
accounting for the current emergent from each face of the 1D voxel, because some particles will emerge 
from the same face through which the source particle entered. Additionally, this effect will complicate the 
calculation of current emergent from coupled voxels; the simple multiplication illustrated in Figure 12 
will have to be modified to iteratively sweep forward and backward to account for particles that were 
“reflected” by the voxel. 

 
Figure 12. Coupling of multiple voxel transfer functions. 

4.2 FY 2020 PROGRESS 

During FY 2020 Q3 and Q4, MCNP6.2 was used to model 1D, 1 cm thick slabs of polyethylene, Fe, and 
highly enriched U (HEU) metal and accumulate the corresponding voxel transfer function 𝐻 using the 
ptrac output-recording incident and emergent particle energy, direction, and time. First, the voxel transfer 
function was accumulated for a monodirectional beam of 14 MeV incident neutrons to visualize the 
relationship between emergent and incident particles. Figure 13 illustrates the particle trajectories 
emergent from each 1D slab. Neutron trajectories are shown in red, and photon trajectories are shown in 
blue; the length of each arrow is proportional to the particle’s energy. The authors also accumulated the 
histogram of emergent neutron position, energy, direction, and time-delay for each material; these 
histograms, shown in Figure 14–Figure 16, are 2D projections of the transfer function. Figure 17 shows 
the transfer functions’ dependence on energy and direction versus time-delay. 
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Figure 13. Neutron and photon trajectories emerging from a 1D, 1 cm thick slab of polyethylene (left), Fe 

(center), and HEU metal (right) for a monodirectional source of 14 MeV neutrons incident on the left face of 
each slab. Neutron trajectories are shown in red, and photon trajectories are shown in blue. The length of each 

arrow is proportional to the emergent particle energy. 

(a) (b) 

(c) 
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Figure 14. Histograms of position, direction, energy, and time-delay for neutrons emergent from a 1D slab of 

polyethylene in response to a monodirectional source of 14 MeV incident neutrons. “Transmitted” neutrons 
emerge from the side of the voxel opposite the source, and “reflected” neutrons emerge from the same side as the 

source; uncollided neutrons (those that passed through the slab without interaction) are omitted. The “ridges” 
labeled in the histograms of emergent energy versus direction result from (a) elastic neutron scatter by 1H nuclei; (b) 

elastic scatter by 12C; (c) inelastic scatter by excited states of 12C. 

(c) 
(c) 

(a) 

(b) 

(c) 
(c) 
(b) 
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Figure 15. Histograms of position, direction, energy, and time-delay for neutrons emergent from a 1D slab of 
Fe in response to a monodirectional source of 14 MeV incident neutrons. “Transmitted” neutrons emerge from 

the side of the voxel opposite the source, and “reflected” neutrons emerge from the same side as the source; 
uncollided neutrons (those that passed through the slab without interaction) are omitted. The “ridges” labeled in the 

histograms of emergent energy versus direction result from (a) elastic neutron scatter by Fe nuclei; (b) inelastic 
scatter by excited states of Fe. 

(a) 

(b) 

(a) 

(b) 



 

23 

 
Figure 16. Histograms of position, direction, energy, and time-delay for neutrons emergent from a 1D slab of 

HEU metal in response to a monodirectional source of 14 MeV incident neutrons. “Transmitted” neutrons 
emerge from the side of the voxel opposite the source, and “reflected” neutrons emerge from the same side as the 

source; uncollided neutrons (those that passed through the slab without interaction) are omitted. The “ridges” 
labeled in the histograms of emergent energy versus direction result from (a) elastic scatter by uranium. 

Figure 14 through Figure 17 omit uncollided neutrons. Additionally, Figure 14–Figure 16 partition the 
emergent neutron current into collided neutrons that emerged from the side of the slab opposite the source 
(“transmitted” neutrons) and those that emerged from the same side of the slab as the source (“reflected” 
neutrons). This terminology has been adopted throughout the remainder of this report. Notably, for the 14 
MeV neutron source, the number of transmitted neutrons is greater than the number of reflected neutrons 
by approximately 10:1. 

(a) (a) 
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Figure 17. Histograms of energy, direction, and time-delay for neutrons emergent from a 1D slab of (a) 

polyethylene, (b) Fe, and (c) HEU metal in response to a monodirectional source of 14 MeV incident neutrons. 

The discrete “ridges” that appear in the histograms of neutron energy versus direction in Figure 14–Figure 
17 are caused by elastic neutron scattering and inelastic scatter by excited states, as labeled in the figures. 

(a) 

(b) 

(c) 
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In Figure 17, these features show that neutrons scattering at a greater angle (and therefore traveling a 
greater distance) emerge later. 

As Figure 14–Figure 17 illustrate, accumulating the voxel transfer function for a single-incident energy 
and direction is relatively straightforward. In this case, 

 𝐽'F(𝑥) = 𝑄𝛿(𝐸 − 𝐸")𝛿(𝜇 − 𝜇"), (4.5) 

where 𝑄 denotes the total number of source particles, so the emergent current 

 𝐽AK)(𝑦) = 𝑄 ∙ 𝐻(𝑦; 𝐸 = 𝐸", 𝜇 = 𝜇"), (4.6) 

such that the transfer function for discrete incident energy 𝐸" and direction 𝜇" is simply1 

 𝐻(𝑦; 𝐸 = 𝐸", 𝜇 = 𝜇") = 𝐽AK)(𝑦)/𝑄. (4.7) 

Consequently, the transfer function for a given voxel composition and geometry can be accumulated from 
a Monte Carlo simulation of the transport of source neutrons with randomly selected energy and direction. 
Each individual source neutron is started with an initial energy and direction randomly chosen from a 
distribution that spans the range of neutron energies and directions relevant to the problem, with 
probability selected to adequately sample all relevant neutron energies and directions. On a neutron-by-
neutron basis, 𝑄 from Equation (4.7) is equal to one, and each neutron history predicts one realization of 
the transfer function. 

For the transfer functions shown later in this report, the authors used a neutron source with directions 
isotropically distributed over 0° to 45° with respect to the 1D voxel surface normal and energies 
distributed uniformly on a logarithmic scale over 10-11 to 20 MeV (the minimum and maximum neutron 
energies tabulated for most cross sections). Figure 18 shows the histogrammed source neutron energy and 
direction distributions of the MCNP source term. 

 
Figure 18. Distribution of source neutron energy and direction used to generate 1D voxel transfer functions. 

The expected value of the transfer function can be estimated from a large number of source neutron 
histories by histogramming occurrences of neutron histories with given emergent energy, direction, and 
time delay for given incident energy and direction: 

 
1 Note, the histograms shown in Figure 14–Figure 16 were not normalized by the total number of 14 MeV source 
neutrons; approximately 500,000 source neutrons were simulated to accumulate these histograms. 
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𝐻(𝑦 = {𝐸AK) , 𝜇AK) , 𝜏}; 𝑥 = {𝐸'F, 𝜇'F}) =

𝐽AK)(𝐸AK) , 𝜇AK) , 𝜏; 𝐸'F, 𝜇'F)
𝐽'F(𝐸'F, 𝜇'F)

, (4.8) 

where the division of 𝐽AK) by 𝐽'F is performed elementwise on the rows of 𝐽AK). 

Figure 19 shows the energy-to-energy transfer function for neutrons transmitted through and reflected 
from 1D voxels of polyethylene, Fe, and HEU metal. Observe that upscattering is evident at thermal 
energies for neutrons reflected from the polyethylene and Fe voxel, and fission spectrum neutrons are 
emergent from the HEU voxel for all incident neutron energies. Again, these transfer functions do not 
include uncollided neutrons; they were filtered from the Monte Carlo histories by removing those 
histories where the incident energy and direction were unchanged as the neutron passed through the 
voxel. The authors think the diagonal ridges evident in each transfer function are caused by low-angle 
scattering and plan to review the logic for excluding uncollided particles. 
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Figure 19. Transfer functions relating emergent and incident energy for 1D slabs of (a) polyethylene, (b) Fe, 

and (c) HEU metal. 

The accuracy of the voxel transfer functions was tested by simulating an isotropic, fission spectrum 
neutron source incident on each voxel. Figure 20 shows the energy and direction distribution of the 
MCNP source term. 

(a) 

(b) 

(c) 
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Figure 20. Distribution of energy and direction for the test case using an isotropic fission spectrum neutron 

source. 

Figure 21 compares the energy-dependent current of transmitted and reflected neutrons predicted by 
direct MCNP simulation (black) to the current predicted using the voxel transfer functions (red) shown in 
Figure 20. The error in the transfer function prediction is shown by the residuals (blue). In each case, the 
residuals are a small fraction of the current, but for reflected particles, the errors are higher because of the 
small sampling of reflected particles when generating the transfer functions. The figures also include 
uncertainties estimated from the count of neutrons contributing to each element of the transfer function; 
these are shown as high/low shaded regions, but they are too small to see clearly without magnifying the 
plot. 
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Figure 21. Comparison of transmitted and reflected neutron current calculated directly using (black) MCNP 
to (red) the current predicted using transfer functions for 1D voxels of (a) polyethylene, (b) iron, and (c) HEU 

metal. 

(a) 

(b) 

(c) 



 

30 

Each transfer function shown in Figure 19 was accumulated from approximately 500,000 neutron 
histories. The MCNP computational time ranged from a few seconds for polyethylene to roughly 3 h for 
HEU. All the MCNP calculations used analog transport, which is likely to remain necessary; ultimately, 
the simulations must include correlated neutrons and gammas from inelastic scatter and induced fission. 

Parsing the MCNP ptrac records takes approximately 1 min to extract the incident and emergent neutron 
and photon state variables (position, energy, direction, and time) and collate them into records relating 
incident and emergent particles. Loading and histogramming these records to accumulate the transfer 
function takes a few seconds (the majority of this time is spent loading the records; accumulating the 
transfer function takes about 20 ms). All of these operations can be performed in advance. 

The actual matrix multiplication to calculate the emergent current from the incident current takes less than 
a microsecond. This initial demonstration indicates that the voxel transfer function approach should 
enable sufficiently accelerated transport calculations necessary to analyze neutron-coded aperture images 
to identify materials present in the target. 

4.3 FY 2021 PLANS 

In FY 2021, NCSU will extend the demonstration presented in this report to include time delay and 
direction in voxel transfer functions. This should not present a significant technical challenge, aside from 
requiring longer Monte Carlo simulations to adequately populate the elements of the transfer function 
with a sufficient number of particle histories. 

More importantly, NCSU will begin coupling voxels composed of different materials to (a) develop the 
procedure to iteratively sweep forward and backward to account for particles that were transmitted and 
reflected by the coupled voxels and (b) evaluate the accuracy of the transfer function for multiple coupled 
voxels. Based on the observations illustrated in Figure 14 through Figure 16 and Figure 19, the number of 
transmitted neutrons is greater than the number of reflected neutrons by approximately 10:1; 
consequently, the iterative backward sweep to account for reflected neutrons is likely to be a correction 
on the order of 10%. 

Implementing reduced-order modeling of voxel transfer functions is a stretch goal for FY 2021. In 
FY 2020 Q3, the potential to implement reduced-order modeling of the transfer function using truncated 
Karhunen–Loève expansions was reported. In FY 2021, implementing truncated Karhunen–Loève 
expansions and other reduced-order modeling techniques and their influence on the accuracy of the voxel 
transfer functions will be investigated. 
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